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Abstract Coupled cluster (CC) methods for the description
of the correlated motion of electrons and nuclei are reviewed
with emphasis on selected new initiatives. The basic aspects
of standard electronic CC theory are described including the
rationale behind the most widely used methods like coupled
cluster singles and doubles (CCSD) and the CCSD(T) ap-
proach. The hierarchy of coupled cluster models consisting
of coupled cluster singles (CCS), CC2, CCSD and CC3 is
also described. A brief account of the theory behind the cal-
culation of molecular properties using CC methods, and the
description of response properties and excited states using CC
response theory is followed by a discussion of the use of CC
theory in the context of effective models for describing mol-
ecules in solution. In another part of the review we consider
recent initiatives aimed at the development of coupled cluster
methods for describing the correlated motion of the atomic
nuclei. A recently developed second quantization formula-
tion of many-mode dynamics for distinguishable degrees of
freedom forms the basis for developing new quantum dynam-
ical methods in particular vibrational coupled cluster (VCC)
methods. The VCC theory is reviewed and discussed in com-
parison with vibrational configuration interaction (VCI), and
vibrational Møller–Plesset (VMP) perturbation theory. The
review concludes with a discussion of some important future
research topics.

1 Introduction

Central to the success of applying quantum mechanics to the
study of the molecular electronic structure has been the devel-
opment of methods that have high enough accuracy and low
enough computational cost to be of general interest. To have
sufficient accuracy in quantum chemical calculations it is
often necessary to use so-called many-body methods. Many-
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body methods seek to describe the correlated motion of the
electrons in the molecule following from their instantaneous
interactions. In this review we discuss a number of aspects
related to the development of accurate many-body methods
for both electrons and nuclear motion. The main focus is on
the use of coupled cluster (CC) theory for approximating the
quantum mechanical description of the many-body system in
certain applications. The development of CC methods have
been pursued for close to 50 years now. CC methods were
originally developed within the framework of nuclear phys-
ics in the late 1950s [1–3]. The CC ansatz was introduced into
quantum chemistry for the description of electron correlation
by Cizek and Paldus in papers from 1966 and onward [4,5].
During the 1980s CC methods made its way to a wider audi-
ence as the advantages of CC theory in comparison to other
approaches became known and efficient computer implemen-
tations began to appear. Examples of papers that turned out
to be seminal are the first coupled cluster singles and dou-
bles (CCSD) implementation by Purvis and Bartlett [6] in
1982 and the introduction of the CCSD(T) method by Ragh-
avachari et al. [7] in 1989. From the 1980s and onward the
development of CC methods became a very active research
area and the CC approach was applied in many different con-
texts by many different groups.

The present review is not intended to be a complete sur-
vey of the development of CC methods, as it does not assert
to cover in any detail all the many contexts in which CC
methods are currently applied and all the many new devel-
opments constantly taking place. Besides giving an account
of some basic aspects defining the CC approach we shall
focus in this review only on a limited number of selected
new developments which relate to the authors own interest
and recent work. Furthermore, among the issues discussed,
completeness with respect to describing all past and present
developments would lead to a very long and very different
review and this was abandoned from the outset. For more
complete descriptions and references related to the develop-
ment of electronic CC methods and many related methods
that historically were important steps on the way, the reader
may consult other reviews [8–23] and monographs[24–29]
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describing CC methods in quantum chemistry at various lev-
els. Concerning the use of the coupled cluster theory in phys-
ics we refer to [30] and [31] for reviews and note that recently
the description of nuclear matter by CC methods has received
renewed interest [32,33].

For systems that have an electronic ground state that is
dominated by a single Slater determinant, the primary CC
models in use have been CCSD and CCSD(T) for many years.
Together with the second order Møller-Plesset [34] perturba-
tion theory (MP2), these methods have in recent years been
the most widely used ab initio methods for going beyond
mean field Hartree–Fock (HF) calculations. Coupled cluster
singles doubles and triples (CCSDT) [35–37] has received
significant attention, but is often too expensive to be use-
ful for molecules with more than a few atoms. Over the years
there have been many suggestions for various other CC based
electronic structure methods of varied complexity and de-
signed for various purposes. Among the first approximate
triple excitations methods are the non-iterative triples cor-
rections and the CCSDT-n models of Bartlett and coworkers
from the mid 1980s [38–40], which were important in estab-
lishing the potential of approximate triples methods prior to
the introduction of the CCSD(T) method. About 10 years ago
we introduced the CC2 and CC3 models [41–43]. The CC2
and CC3 methods were designed with a particular emphasis
on predicting certain molecular properties where the use of
MP2 and CCSD(T) turned out to be problematic. These is-
sues were primarily related to the calculation of molecular
response properties, including electronic excitation energies
and frequency-dependent (hyper-) polarizabilities. The intro-
duction of CC2 and CC3 gave rise to a hierarchy of methods
comprising of CCS, CC2, CCSD, CC3, . . . . The models of
this hierarchy have been implemented for the calculation of
many different properties in different contexts and by differ-
ent researchers. For the calculation of electronic excitation
energies, black box methods including electron correlation at
different levels like CC2 and CC3 were in great need. It was
soon also established that CC3 provides high accuracy for
many other challenging response properties. Over the years
many other approximate CC models have been developed
including other approximate triples methods to which we
shall return later in this introduction.

If for a moment we assume that the electronic structure
problem is solved, it becomes clear that not only is the mo-
tion of the electrons important for accurate calculation of
quantities of experimental interest but also the motion of the
atomic nuclei. Molecular vibrations are of course a primary
issue in relation to high-resolution vibrational spectroscopy,
UV spectroscopy, photo-electron spectroscopy etc. Further-
more, consideration of molecular vibrations is important for
molecular properties due to the averaging of electronic prop-
erties over the vibrational motion. In addition, some molecu-
lar properties have important pure-vibrational contributions
as has been amply demonstrated for non-linear optical prop-
erties [44]. Most obviously, the correlated motion of the
atomic nuclei is important in chemical reactions including
photo-induced dissociation etc. Describing the dynamics of

the atomic nuclei involves a number of different problems
and the field of quantum molecular dynamics has tradition-
ally been an issue separate from electronic structure research.
Nevertheless, one of the basic problems is to describe the cor-
related motion of some pseudo particles. Thus, for molecular
vibrations and nuclear dynamics also we may speak more
generally of a many-body problem. Consider, for example,
the description of molecular vibrations. The basic harmonic
oscillator treatment defines a set of distinguishable molecu-
lar vibrations that are uncoupled. This treatment is not ex-
act with anharmonicities causing sometimes large deviations
from the harmonic oscillator description. Calculation of the
bound states by various methods has been developed in many
different flavors, see for example the reviews in [45]. One
branch of the methods are based upon the vibrational self-
consistent field (VSCF) approach [46–52]. In the VSCF ap-
proach each degree of freedom vibrates in the average field
of the other modes thereby providing an approximate treat-
ment of anharmonicities. For vibrational wave functions the
neglect of direct correlations leads also to critical limitations
in the final accuracy that can be achieved, and a number of
different methods have been suggested to overcome this. The
approaches used have primarily been vibrational configura-
tion interaction (VCI) [53–58] and Vibrational Møller–Ples-
set perturbation theoretical methods [50,59–61]. In a recent
publication [51] a new second quantization (SQ) formulation
of many-mode dynamics was outlined. Building on this new
formulation a vibrational coupled cluster (VCC) approach
could be defined and implemented [51,52]. The initial re-
sults have been highly encouraging while at the same time a
number of new issues are raised.

In this review we shall consider selected issues in elec-
tronic CC theory, solvent modeling in conjunction with the
use of CC methods, and vibrational many-body methods
including VCC. We shall discuss the most widely used elec-
tronic CC methods, the CCSD and CCSD(T) methods, as
well as some of our own CC models. We shall discuss very
briefly the theory behind the calculation of molecular proper-
ties. This very broad issue will not be discussed in great detail
as it is well described in other reviews [9,14,62]. However,
widely used and very important concepts such as variational
Lagrangian’s and the auxiliary 〈�| state [31,62–64] will be
introduced and used in subsequent sections. In addition, a
brief account of response theoretical methods will be given
as a necessary introduction to the study of excited states by
response theoretical methods. The relation to the equation of
motion CC (EOM-CC) [65] and symmetry-adapted-cluster
CI (SAC-CI) approaches [66–68] will be discussed briefly.
Coupled cluster response theory methods by themselves have
a long history with many important contributions following
the Monkhorst linear response paper of 1977 [69]. For the
description of many other contributions to this field we re-
fer to [9,14,62,70,71] and the references therein. A review
covering specifically the CC response theory in the context
of non-linear optical properties will appear else-where [72].
In a later section the construction of effective solvent models
using CC methods is considered focusing on the most basic
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problems in defining such approaches in the CC context. An-
other forthcoming review [73] will detail certain aspects of
the theory in a CC context. Reviews and a few defining pa-
pers on solvent models, hybrid methods and related aspects
can be found in [24,25,74–83]. Finally, we shall describe
vibrational CC theory and discuss characteristics of this the-
ory in comparison with the VCI and VMP theories as well
as the principal and practical differences between CC theory
as applied to electrons and to nuclear motion. We shall con-
clude with a summary including remarks on future research
directions that are expected to be important.

Many other important issues and developments in CC the-
ory are not treated in detail in this review.A few of these issues
will be mentioned in the remaining part of this introduction
to give a flavor of the activity in the field and some references
to the literature. However, it should again be emphasized that
completeness has not been striven for.Among the many other
areas of research which are not treated in this review are such
important topics as relativistic quantum mechanics [84–86],
exchange perturbation theoretical calculation of intermolec-
ular interactions [88,87], extended systems [89], the many
issues special to open-shell systems [23], etc.

Besides the approximate single reference models previ-
ously mentioned above, many other approximate single ref-
erence models have been developed through the years. Full
CCSDT models have been explicitly implemented for calcu-
lation of ground state energies [35–37,90], excitation ener-
gies [91], energies of ionization [92] and electron attachment
[93] as well as for analytical calculation of properties [94,
95]. There are many papers discussing explicit inclusion of
quadruple and higher excitations, see [89,91,96,97] and ref-
erences therein. It should also be mentioned that alternative
hierarchies of CC methods have been suggested including
the quadratic coupled cluster model methods of Gwaltney
and Head-Gordon [98], Gwaltney et al [99] and van Voorhis
and Head-Gordon [100].

One interesting activity is the development of more gen-
eral and open ended CC implementations including the work
of Kallay et al. [101–105], Olsen and coworkers [106,107]
and the work of Hirata et al. [108] and Hirata and Barlett
[109]. While most standard CCSD and CCSD(T) implemen-
tations proceed by implementing a large number of terms de-
rived in full detail, these newer implementations aim at using
more general and flexible schemes. These general develop-
ments allow calculations with high excitation levels,
implicitly covering also CCSDT and CCSDTQ and so on.
However, in some variants, it also allows introducing only
selected types of higher excitations, for example only those
which fulfill certain limitations on the orbitals involved in
the excitations joining earlier related work, see [21,110,111]
and references therein. In this manner one may employ the
concept of distinct active spaces in the CC theory also. This
can be used to construct wave functions of a certain restricted
multi-reference character. A related approach that is general
in another way is the automatic generation of codes with the
tensor contraction engine of Hirata, as a recent and impres-
sive example [112,113]. The tensor contraction engine auto-

mates the time-consuming, error-prone processes of deriving
the working equations of a well-defined model of second-
quantized many-electron theory, and translates these into a
potentially parallel program. There have been other reports
on automated implementation of CC methods [114–117] fol-
lowing the work of Janssen and Schaefer [118]. These various
types of more general approaches for working with CC meth-
ods can lead to competitive implementations while at the
same time allowing much more general and flexible wave
functions than in previous standards. This is certainly an
important message for those developing new CC methods
and although more general multi-reference CC methods have
been proposed, such developments may have high impact in
the coming years.

Multi-reference CC theory in all its flavors is an important
topic not covered in detail in this review. The interested reader
is referred to the previously mentioned general references as
entries to broader parts of the literature on these subjects. A
similar comment applies to various alternative ansatzes such
as unitary and expectation value based CC methods, see [119,
120] for further references and interesting formal analysis.
Still today the description of the breaking of chemical bonds
is a challenge to theoretical chemistry in general and to CC
methods in particular in spite of its obvious importance in
chemistry [121]. However, many researchers have over the
years advanced new ideas and tested various methods with
respect to this issue including the work of Paldus reviewed in
[12] and others, only a few of which will be mentioned here.
Krylov et al. [122,123] have suggested a valence active space
optimized orbital coupled-cluster doubles model and, more
recently, a spin-flip method. The spin-flip methods of Krylov
and coworkers [124–127] relies on the fact that open shell
triplet states are often easier to describe than open shell sin-
glet states. In this formalism a high-spin triplet state is thus
used as a single-reference wave function for studying the
more difficult singlet state. The method of moments and ren-
ormalized CC methods reviewed in [15] are other frameworks
within which a number of new CC models have been devel-
oped including also new approximate triple excitation meth-
ods [128]. A generalization of the renormalized approaches
has recently been reported [129] addressing the important
issue of size-extensivity. Interesting developments and test
comparisons of selected single and multi reference methods
are presented in recent papers by Sherrill and coworkers [130,
131] and others [132,107].

Over the years quantum chemical calculations have been
applied to systems of increasing size. While one reason has
been the steady increase in computer power, the other
important reason is the development of more efficient imple-
mentations of methods with significantly reduced computa-
tional cost. These developments may be due to the invention
of new models with lower cost, as for example the CC2
method which was developed as an approximation to CCSD.
This reduced the computational scaling of the method in
terms of CPU time from N6 for CCSD to N5 for CC2,
where N is the number of orbitals. However, developments
providing access to larger molecules may also be due to
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reformulation and/or approximations in other aspects than
the CC model itself. For example, the CC2 model has been
implemented in combination with the so-called resolution of
identity approach by Hättig [133]. The RI-CC2 implementa-
tion gave significant additional reductions in computational
scaling in terms of both CPU time and storage requirements
compared to the previous CC2 implementations with the
introduction of an additional, very small error. Further devel-
opments of RI-CC2 has established this approach as a com-
petitive candidate for calculation of excitation energies and
excited state structures for large molecules [134]. Another
interesting approach aimed at excited states of larger mole-
cules is the similarity transformed EOM-CC (STEOM-CC)
approach of Nooijen and coworkers [115,135,136]. It should
also be noted that the SAC-CI approach has been used for
rather large molecular systems for a number of years [137].

The quest for formulations and implementations of CC
applicable to still larger systems has more generally lead to a
number of different suggestions for new approximations and
implementations. Initial promising works on creating linear-
scaling AO-based CC strategies and related issues have only
been little used [138,139]. There has been significant activity
in the area of local correlation CC methods [140–144] and
related approaches [145] and rather large systems can indeed
be handled using such localized CC methods. It is impor-
tant to stress that these local methods do not give equivalent
results to standard CC methods and the results depend on
the definition of local domains which in practice seems most
often to be based on the original ideas of Saebø and Pulay
[146] developed within the MP2 framework. One important
issue that has been investigated is the discontinuity of the
potential energy surface obtained using such local methods
[143]. It is certainly possible and likely that CC methods bet-
ter suited for large molecular systems will involve other or
additional approximations compared to those used today for
small molecules, but exactly which is still difficult to guess
at this stage. This research area will be very important for the
future of electronic CC theory and the success of the devel-
oped methods is encouraging.

One acute practical problem in many CC calculations is
the need for rather large one-electron basis set to obtain accu-
rate results. This is due to the convergence of the description
of electron correlation with respect to the size of the one-
electron basis. One promising area of research that relates to
this issue are the explicitly correlated methods including the
so-called r12 [147–150] and Gaussian Geminal methods [87,
151–155] that includes explicitly inter-electronic distances
in the wave function. It has been established that close to
basis set limit can be achieved using such methods and in
conjunction with the CC method this has been used to obtain
very accurate results.

Finally, there has recently been significant discussion of
the potential of using coupled-cluster with generalized single
and double excitations (CCGSD) based on a recent work by
Nakatsuji [156] and Nooijen [157]. Whether approaches of
this type are useful and can describe the exact wave function

with a minimal number of parameters is still being debated
[158–163].

2 Electronic structure theory

In non-relativistic electronic structure theory the aim is to
solve the many-electron molecular electronic Schrödinger
equation approximately but accurately. The approximations
commonly used in modern quantum chemistry have a two-
step approach: (a) A finite one-electron basis set is used. Ide-
ally a complete basis set (CBS) should be used but in practice
one is forced to employ finite and thereby incomplete basis
sets. (b) The use of an approximate N -electron model. For
a given one-electron basis the best electronic wave function
that can be obtained is the full configuration interaction (FCI)
wave function having contributions from all Slater determi-
nants (SD) that can be constructed from the given one-elec-
tron basis set. Conventional FCI calculations can only be
carried out for small systems and small basis sets and most
often a less flexible approximate wave function must be used.
Such an approximation can be seen as a particular model for
the description of the correlated motion of the N electrons.
To obtain the exact solution to the Schrödinger equation we
must simultaneously extend our calculation toward the CBS
and FCI limits. In this review we focus solely on the N -elec-
tron models and refer to text books and references therein for
discussions on the equally important basis set issue [24,28].
For simplicity we discuss only the single reference closed
shell theory here.

2.1 Second quantization and excitation operators

Second quantization [28,29,164–166] (SQ) for electrons is
formulated in terms of creation and annihilation operators
built upon a basis of spin-orbitals. SQ should be well known
to the reader, but a very short account is included here to illus-
trate the extent to which the introduction of SQ is similar in
electronic and vibrational theories. The spin-orbitals are typ-
ically products of a spatial orbital being a function of the
coordinates of the electrons (�r) times a spin-function reflect-
ing the spin projection (Ms = ± 1

2 ). The creation operator
a†

p creates an electron in spin–orbital p while the annihila-
tion operator ap annihilates an electron in spin–orbital p. The
second quantization algebra is defined by the usual fermion
anti-commutator relations

[a†
p, aq]+ = a†

paq + aqa
†
p = δpq, (1)

[a†
p, a†

q]+ = [ap, aq]+ = 0, (2)

and

ap|vac〉 = 0. (3)

Here the vacuum state denoted |vac〉 is a state with no elec-
trons. Both the relevant quantum mechanical states and the



110 O. Christiansen

operators are expressed in terms of creation and annihilation
operators. This includes the electronic Hamilton operator,

Ĥ =
∑

pq

hpq â
†
pâq + 1

2

∑

pqrs

gpqrs â
†
pâ†

r âs âq + hnuc, (4)

that in SQ is given in terms of one-electron integrals account-
ing for the kinetic energy and the electron–nuclear attrac-

tion, hpq = ∫
φ∗

p(�x)
(
− 1

2∇2 − ∑M
m=1

Zm

|�r− �Rm|

)
φq(�x)d �x, and

the two-electron integrals accounting for the electron–elec-

tron repulsion, gpqrs = ∫ ∫ φ∗
p( �x1)φ

∗
r ( �x2)φq ( �x1)φs ( �x2)

|�r1−�r2| d �x1d �x2. The
�x-vectors denote a combined set of spatial (�r) and spin coor-
dinates (Ms = ± 1

2 ). The last term in Eq.(4) is the nuclear
repulsion energy.

A Slater determinant with n electrons in the spin-orbi-
tals 1,2,... n is represented in SQ as a state where electrons
are filled in by multiple applications of SQ creation opera-
tors, |SD〉 = ∏n

i a
†
i |vac〉 = a

†
1a

†
2, ..., a

†
n|vac〉. The operator

a†
qap is an excitation operator. It excites an electron from

orbital p (if occupied) to orbital q when working on a given
Slater determinant. Making products of such one-electron
operators, multiple-electron excitation operators can be con-
structed. The excitation operators are used extensively in the
following. In particular we shall use a formulation where we
promote electrons from occupied orbitals i, j, k, .. to unoc-
cupied orbitals a,b,c,... in a reference state, which typically
will be a Hartree–Fock state. The excitation operators for
doing this are of type a†

aai for single excitations, a†
aa

†
baiaj

for double excitations, etc. We shall denote these operators
by τµi

for i-tuple excitations. Thus the i-index denotes the
excitation level (i=1 corresponds to single excitations, i=2 to
double excitations, etc.) and µ denotes a particular index set
(ai, aibj ,.. etc). We note a few properties of the excitation
operators which follows directly from commutator algebra
and the basic relations in Eqs.(1–3). The excitation operators
commute

[τµi
, τνj

] = 0, (5)

while in general τµi
and τ †

νj
do not commute. We have the

“killer” conditions (from Eq.(3))

τ †
νj

|HF 〉 = 0. (6)

Finally, we have the orthogonality conditions

〈µi |νj 〉 = 〈HF |τ †
µi

τνj
|HF 〉 = δµ,νδi,j , (7)

where the states |µi〉 = τµi
|HF 〉 denote the manifold of exci-

tations out of the HF reference. The whole space of N -elec-
tron wave functions with the given orbital basis set is given
in terms of the reference state and the manifold of excitations
out of the reference state, e.g., {|HF 〉,τµi

|HF 〉}.

2.2 The coupled cluster ansatz

The coupled cluster ansatz is given by

|CC〉 = exp(T )|HF 〉, (8)

where |HF 〉 is the Hartree–Fock reference wave function
and T is the so-called cluster operator

T = T1 + T2 + T3 + · · · + Tn =
n∑

i=1

∑

µi

tµi
τµi

. (9)

The tµi
parameters denote the cluster amplitudes. The number

of electrons in the system is n. The exponential of the cluster
operator is defined through its Taylor expansion. Reference
states other than the HF state can also easily be used.

The CC wave function ansatz is introduced into the time-
independent Schrödinger equation and pre-multiplying with
exp(−T ) we obtain

exp(−T )H exp(T )|HF 〉 = ECC |HF 〉. (10)

Projection onto the HF reference state gives an expression
for the CC energy

ECC = 〈HF |H exp(T )|HF 〉. (11)

(where the killer condition of Eq.(6) ensures the exp(−T )
operator drops out). The CC amplitudes are determined by
projection onto the excitations out of the reference state

eµi
= 〈µi | exp(−T )H exp(T )|HF 〉 = 0. (12)

These are the basic working equations for CC theory. We
first solve the non-linear set of equation in Eq.(12) and sub-
sequently use the calculated cluster amplitudes to calculate
the energy according to Eq.(11).

One important advantage of the CC equations above result-
ing from projection is that they give a set of algebraic equa-
tions for the amplitudes that are at most quartic in the cluster
amplitudes. The drawback is that the CC method is not var-
iational. Thus the CC total ground state energy is unbound
and may be, and sometimes is lower than the exact energy.
This does not by itself necessarily give rise to problems, but
does make the results unbound which may be problematic
if, for example, the reference state is a poor approximation.
The non-variational nature of the CC ansatz does require
additional attention for analytical calculation of molecular
properties and the construction of effective solvent models
as we shall see to later.

When the cluster expansion includes all possible excita-
tions, the CC parameterization has the necessary flexibility to
represent the FCI solution. However, the exponential form of
the parameterization has some crucial advantages in approx-
imate theories. Truncating the cluster expansion in Eq. (9)
and the corresponding projection manifold at a certain exci-
tation level, yields approximate CC models. The CCS [41],
CCSD [6], CCSDT [35,37], etc. models are obtained with
T = T1, T = T1 +T2, T = T1 +T2 +T3, ... and so on. Since
the exponential ansatz includes the higher excitations that
are the product of lower ones also in the truncated case, only
the so-called connected higher excitations are left out. For
example the connected quadruple excitations given by T4 are
neglected in CCSD while the disconnected quadrupole exci-
tations due to 1

2T 2
2 are included. Impressive improvements in
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accuracy are obtained at each step in the hierarchy defined
above. A major problem is, however, that the complexity also
increases very fast. The CCS model gives the same ground
state energies as HF and has similar complexity as HF (thus
the HF abbreviation is used and should be used except in the
context of molecular response properties where CCS means
something different than HF). CCSD is significantly more
expensive having an N6 computational scaling. CCSDT is a
computationally very expensive approach for two reasons: (a)
The operation count increases steeply as N8. (b) The number
of triples excitation amplitudes are in many cases prohibitive.
Thus in reality there seems to be only little of a CC hierar-
chy. However, methods in between CCS and CCSD and in
between CCSD and CCSDT can be constructed based on
additional approximations as will be discussed in the follow-
ing subsections.

2.3 Møller–Plesset perturbation theory and the mixed
hierarchy of methods

Møller–Plesset perturbation theory [34] is the perturbation
theoretical approach to the many-body problem. A partition-
ing of the Hamiltonian into ’unperturbed’ and a perturbation
is introduced on the basis of the Fock potential – the mean
field – found in an HF calculation

H = h + g = h + V F + (g − V F ) = F + U. (13)

U denotes the fluctuation potential and measures the differ-
ence between the true two-electron repulsion operator, g,
and the Fock mean field representation, V F . The HF state
is an eigenfunction for the Fock operator, e.g., F |HF 〉 =∑

i εi |HF 〉 where F = ∑
i εia

†
i ai in a canonical basis. We

may thus perform a perturbation expansion in orders of U
with the HF state as the zeroth order state. The HF energy
contains the first order energy correction in U and proceed-
ing to higher order in U we obtain MP2, MP3, MP4, ... etc.
Though MP2 in many cases includes a major part of the cor-
relation effects, it is now well understood that the MP series
should not be expected to be convergent [167,168] and typ-
ically divergent and oscillating behavior is obtained in the
MP series [167–170]. Thus, if MP2 is not sufficiently accu-
rate one should look into other theories to proceed, and not
into a higher order MP. However, though CC does not rest
on the same assumptions as the MP theory, perturbational
arguments may in some cases still provide inspiration with
respect to introducing approximate CC methods as will be
discussed in the following.

The CCSD energy is correct through third order in the
perturbation theory but includes infinitely many higher order
terms of a restricted type. Correctness through fourth order
requires inclusion of triples excitations. This has inspired var-
ious approximate triples excitation models in-between CCSD
and CCSDT in accuracy and cost as mentioned in the intro-
duction. The CCSD(T) method has been the most widely
adopted and successful of these triples excitation methods

and is defined by the following approximation for the ground
state energy [7]

ECCSD(T) = ECCSD +
∑

µ1

tµ1〈µ1|[H, T3]|HF 〉

+
∑

µ2

tµ2〈µ2|[H, T3]|HF 〉 (14)

Here the triples amplitudes are estimated from the triples
excitation equations as they occur in lowest non-vanishing or-
der for MP theory (tµ3 = −(ωµ3)

−1〈µ3|[U, T2]|HF 〉 where
ωµ3 denotes a simple sum of orbital energies of the type
εa +εb+εc−εi −εj −εk) but using CCSD amplitudes in their
calculation. The triples correction ensures the energy is fully
correct through the fourth order but contains simultaneously
infinitely many higher order terms. Though CCSD(T) is re-
lated to perturbation theory in some aspects, it is certainly not
a perturbation method and not defined by any order expan-
sion. Thus the convergence problems of MP does not affect
the CC models. Of course, the quality of a particular approx-
imation must always be considered in practice. CCSD(T) has
been one of the most successful approximations in quantum
chemistry. For systems where a single reference ansatz is
appropriate, it gives very accurate results. CCSD(T) requires
an iterative solution of the CCSD equations with N6 opera-
tion count followed by a non-iterative N7 step to obtain the
triples correction. This is a significant reduction compared to
the iterative N8 steps for CCSDT. Furthermore, even though
CCSD(T) includes connected triples excitations they do not
need to be stored explicitly as for CCSDT. When a particu-
lar triples excitation is required for the energy it can simply
be evaluated “on the fly” from the doubles excitation CCSD
amplitudes and the U operator.

The sequence HF, MP2, CCSD and CCSD(T) is an of-
ten used hierarchy of methods for calculating the ground
state frequency-independent properties, including equilib-
rium structures, vibrational frequencies, NMR shielding con-
stants and chemical shifts [9,22]. A practical note is that for
some applications, for example the calculation of equilibrium
structure of molecules consisting of very light elements, MP2
is surprisingly good and perhaps even competes with CCSD.

2.4 A coupled cluster hierarchy of models for molecular
response properties

A drawback of non-iterative methods like MP2 and CCSD(T)
is that they cannot be used for calculating the excitation
energies and frequency-dependent molecular properties. It is
therefore desirable to introduce an alternative hierarchy for
the calculation of molecular properties, that is, for describing
the interaction of molecules with light. We now describe how
additional CC models can be constructed by approximating
the amplitude equations for the standard CC models CCS,
CCSD, CCSDT, . . . .

We invoke again a Møller–Plesset type of partitioning of
the Hamiltonian, but in addition to the Fock operator, F , and
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the fluctuation operator, U , an external one-electron pertur-
bation, V , is also included

H = F + V + U. (15)

We do not include V into the Fock operator F . This indicates
that the HF reference state and therefore also the Fock opera-
tor are kept fixed in the presence of the external perturbation
V . This is what corresponds to an orbital unrelaxed approach.
An orbital-relaxed approach would include V in F.

We introduce T1 similarity transformed operators [171]
denoted by a hat

Ô = exp(−T1)O exp(T1). (16)

The CCSD amplitude equations can be written (using the T1
similarity transformed operators and the Baker–Campbell–
Hausdorff expansion)

〈µ1|[F, T1] + V̂ + Û + [V̂ + Û , T2]|HF 〉 = 0, (17)

〈µ2|[F + V̂ , T2] + Û + [Û , T2]

+1

2
[[Û , T2], T2]|HF 〉 = 0. (18)

All other terms in the expansion vanish identically.
In CC2, the doubles equation is simplified by including

only terms entering in lowest non-vanishing order with the
proviso that T1 is treated as zeroth order [41]. This extra cri-
teria comes in since the response of the singles excitations
to an external one-electron perturbation is zeroth order in
U. Denoting order by n, m referring to order in V and U ,
respectively, in a double perturbation expansion the situation
is readily analyzed as follows. To first-order in V and zeroth
order in U we have for example, ωµ1 t

(10)
µ1

= 〈µ1|V |HF 〉 �= 0
when V is non-vanishing. Consider now the case where we
wish to study the system both with V present and absent.
Without V , singles excitations are second order in U mean-
ing they are zero in zeroth and first order, while when V
is present, singles excitations are non-zero already in zeroth
order in U . To have a balanced description of the system with
and without an external perturbation we must give special
attention to the singles excitations. We do this by enforcing
that they should be considered as being zeroth order in U
all the time. This is most conveniently achieved in practice
simply by taking Û as a first-order effective Hamiltonian.
T2 and T3 enter, respectively, in first and second order in U .
We now introduce the CC2 model with the above slightly
modified order counting by inspecting the CCSD equations.
The singles equation of CC2 is kept as that of CCSD, but the
doubles equations are approximated to lowest non-vanishing
order, e.g.

〈µ2|[F + V̂ , T2] + Û |HF 〉 = 0. (19)

The “hats are kept on” to give the specialized treatment of sin-
gles. Since T2 is first order in U the [Û , T2] and 1

2 [[Û , T2], T2]
terms are, respectively, second and third order in U and ne-
glected in the CC2 doubles equations. This defines the CC2
model. Without the special treatment of singles due to the
external perturbation a second-order approximation to CCSD

gives MP2, but accounting for a possible external perturba-
tion (in an orbital un-relaxed fashion) we arrive at CC2 as the
second-order CC approximation.

This philosophy can also be applied in higher order, most
important is the introduction of CC3 as an approximated
CCSDT model. In CC3, the singles and doubles equations are
identical to those of CCSDT, while in the triples equations
only terms in lowest non-vanishing order of U are retained.
In approximating the triples equations, the singles excitation
amplitudes are treated as zero-order parameters using similar
arguments as for CC2. Thus the CCSDT triples equations

〈µ3|[F + V̂ , T3] + [Û , T2] + 1

2
[[V̂ + Û , T2], T2]

+[Û , T3] + [[V̂ + Û , T2], T3]|HF 〉 = 0. (20)

are approximated to give the CC3 triples amplitude equations
[42]

〈µ3|[F + V̂ , T3] + [Û , T2] + 1

2
[[V̂ , T2], T2]|HF 〉 = 0.(21)

Since T2 is first order in U and T3 is second order in U the
remaining terms in the CCSDT triples equations are of third
and higher order in U . The CC3 ground state energy includes
the same fourth- and fifth-order energy as CCSD(T). The CC3
method is also closely related to some of the earlier suggested
CCSDT-n models for the ground state energy [38–40]. Relax-
ing for example the special treatment of singles excitations,
one obtained the CCSDT-1b model. On the other hand if also
the 1

2 [[Û , T2], T2] term is included, one obtains the CCSDT-3
model, which thus includes the terms included in CC3 as a
subset. In this respect it should be clear that the new concept
in the construction of CC3 is that it is designed especially
for calculation of response properties giving additional guid-
ance as to which terms are important for that purpose and
which are not. For the ground state energy alone, neither of
the above approximate triples excitation methods seems to
hold significant general advantages compared to the compu-
tationally cheaper CCSD(T) method. Other recent triples and
higher excitation models were mentioned in the introduction
but shall not be detailed here.

The formal operational cost in the CCS, CC2, CCSD,
CC3.... sequence of models increases as N4, N5, N6, N7,...
We have thus obtained a practical hierarchy of CC models
with a guaranteed convergence to the FCI limit. The primary
area of application of CC2 and CC3 is for the response the-
ory where we exactly describe the response of a system to an
external perturbation as was discussed in connection with the
defining equations for CC2 and CC3. In the response theory
we first calculate the unperturbed state and thereafter investi-
gate the response. It turns out that also for CC3 we can avoid
the explicit storage of the triples excitations in a similar way
as for CCSD(T), both for the unperturbed ground state and
in the solution to the response equations [42].
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2.5 Molecular properties from CC methods

2.5.1 Energy derivatives

The CC energy and parameters are determined by projection
and the CC method is thereby non-variational. However, a
variational Lagrangian can be introduced [31,62,63] to aid
us in the derivation of expressions for calculations of deriv-
atives of the energy (and other issues as we shall see later).
Accordingly, we consider the Lagrangian
L(t, t̄) = ECC(t) + t̄ e(t). (22)
The vector t̄ multiplied onto the vector of cluster amplitude
equations e(t) consists of the so-called Lagrangian multi-
pliers. Requiring that L be simultaneously stationary with
respect to both the t and t̄ parameters we obtain

0 = ∂L(t, t̄)

∂ t̄µi

= eµi
(t) = 〈µi | exp(−T )H exp(T )|HF 〉, (23)

0 = ∂L(t, t̄)

∂tνj

= ∂ECC(t)

∂tνj

+
∑

i,µi

t̄µi

deµi
(t)

dtνj

= 〈�|[H, τνj
]|CC〉. (24)

In Eq.(24) we have introduced the auxiliary state

〈�| = (〈HF | +
∑

i,µi

t̄µi
〈µi |) exp(−T ). (25)

The first equation (Eq.(23)) is the cluster amplitude equa-
tion (Eq.(12)) and it ensures that the Lagrangian is varia-
tional with respect to t̄ . The second equation (Eq.(24)) deter-
mines t̄ such that the Lagrangian is variational with respect
to t . When these equations are fulfilled the Lagrangian gives
the CC energy, L(t, t̄) = ECC(t). The t̄ parameters are not
needed in the actual calculation of the ordinary CC energy
where it is simpler just to solve the cluster amplitude equa-
tions (Eq.(12)) and then calculate the energy according to
Eq.(11). On the other hand the t̄ parameters are important for
efficient analytical calculation of molecular properties and,
as we shall see later, in CC effective solvent models.

Next, we consider the calculation of a first-order prop-
erty - an expectation value. We consider the Hamiltonian,
H = Ho + FxX, where Fx is the perturbing field and X is
the operator for the molecular property. For an exact state,
|	〉, we have the Hellman–Feynman theorem

〈X〉 = dE

dFx

|Fx=0 = 〈	|X|	〉. (26)

In CC theory we determine equivalently an expression for the
expectation value through the energy derivative expression
which can be calculated as the derivative of the Lagrangian
dLCC

dFx

|Fx=0

= ∂L

∂Fx

|Fx=0 + ∂L

∂t
|Fx=0

∂t

∂Fx

|Fx=0 + ∂L

∂t̄
|Fx=0

∂t̄

∂Fx

|Fx=0

= ∂L

∂Fx

|Fx=0, (27)

where the stationary criteria on the Lagrangian simplifies
the expression since the two terms involving ∂L

∂t
|Fx=0 and

∂L
∂t̄

|Fx=0, are zero. Thus we have that in CC the first order
energy derivative, the expectation value, is obtained from

〈X〉 = 〈�|X|CC〉. (28)

We note that the different “left" and “right" states are a con-
sequence of the non-variational projection nature of the CC
methodology. When complex wave-functions or imaginary
perturbation operators X are considered, only the real parts of
the expression should be considered (〈X〉 = 1

2 〈�|X|CC〉 +
1
2 〈�|X|CC〉∗ ).

The first-order derivative of the energy allows for the
determination of the molecular gradient (X correspond to
geometrical distortions – note that in this case the geometry
dependence through the basis set and the orbitals must be
considered in addition), dipole moments, electric field gra-
dients and so on. The advantage of the Lagrangian approach
is that it gives expressions for calculation of energy deriv-
atives which requires only a limited number of additional
equations to be solved. For example, first order properties
can be calculated without knowledge of the derivatives of
the cluster amplitudes requiring only the solution of one set
of linear set of equations (for t̄) to determine all first-order
properties. Similar advantages are obtained for higher order
properties. The Lagrangian approach thereby automatically
includes the results obtained by applying the inter-change
technique of Handy and Schaefer [172] used in many works.
The Lagrangian approach is already very helpful as an aux-
iliary tool and we shall see in a later section how it can take
an even more crucial role.

Many implementations of analytical derivatives have been
reported since the first CCSD molecular gradient code in
1987 [173]. For more concrete aspects about implementa-
tions as well as many more examples and references, consult
the reviews in [9] and [22].

2.5.2 Response theory

Consider a molecular system in vacuum described by a time-
dependent Hamiltonian, H ,

H = H + V t , (29)

where H is the unperturbed Hamiltonian and V t is a time-
dependent perturbation. The term, V t , may be written as a
Fourier expansion

V t =
N∑

k=−N

exp(−iωkt)V
ωk

=
N∑

k=−N

exp(−iωkt)
∑

y

εy(ωk)Y . (30)

It is required that εy(ωk) = εk(−ωk)
∗ and that the operators

Y are Hermitian. The expansion of the expectation value of
an observable, X, in orders of the perturbation
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〈	̄o(t)|X|	̄o(t)〉 = 〈	o|X|	o〉
+

∑

y

εy(ωy)〈〈X, Y 〉〉ωy
exp(−iωyt)

+ · · · (31)

defines the linear response function 〈〈X, Y 〉〉ωy
as well as the

higher order response function.
The derivation of the explicit expression for response

functions is easily described, though the theory behind this
machinery can be somewhat involved, see Refs. [62,174–
176]. The ansatz for the time evolution of the coupled cluster
wave function may be expressed as

|C̄C(t)〉 = exp(−iP (t))|C̃C(t)〉
= exp(−iP (t)) exp(T (t))|HF 〉 (32)

where P(t) is a function of time. We assume that the ref-
erence state |HF 〉 is fixed and thus time-independent. From
the time-dependent Schrödinger equation and projecting onto
〈HF | and the manifold of excitations we derive the following
equations for the so called time-dependent coupled cluster
quasi-energy

Q(t) = Ṗ (t) = 〈HF |H(t) exp(T (t))|HF 〉, (33)

and the coupled cluster amplitudes

eµi
(t) − iṫµi

(t) = 〈µi | exp(−T (t))H(t) exp(T (t))|HF 〉
−iṫµi

(t) = 0. (34)

In the time-independent limit, Eqs. (33) and (34) reduce to
the usual coupled cluster energy and amplitude equations.
We may in the time-dependent case construct a quasi-energy
coupled cluster Lagrangian [42,62]

LCC(t) = Q(t) +
∑

i,µi

t̄µi
(t)(eµi

(t) − i∂tµi
(t)/∂t) (35)

The response functions can now be obtained as derivatives
of the time-average of this Lagrangian.

〈〈X; Y 〉〉ωy
= d2{L(t)}T

dεx(ωx)dεy(ωy)
, (36)

where ωx + ωy = 0. Similar derivative expressions exist for
the higher order response functions. Here it is assumed that
a common period T exists for the perturbations in Eq. (30)
(V (t + T ) = V (t)) and the time-average over a period T is

denoted as {f (t)}T = 1
T

∫ T
2

− T
2
f (t)dt While the quasi-energy

is real for normalized variational wave-functions, the above
Lagrangian is not assured to be real but extracting the relevant
part from the general derivative expressions is trivial [62]. In
practice the response function and the necessary response
equations to be solved are thus obtained by expanding the t
and t̄ parameters in orders of the perturbation and carrying
out the differentiations implied by the above equations. This
leads to expressions for response functions requiring the solu-
tion of some linear equations. These response equations are
essentially just derivative versions of Eqs. (23) and (24). The
message is that though significant work is required, the solu-
tion of the CC response equations and the final calculation

of the response function can be worked out using strategies
rather similar to those for the calculation of the ground state
energy and molecular gradient.

Overall, the calculation of molecular properties using CC
response theory have become more and more widespread,
being implemented in several computer programs in various
flavors, see for example Refs. [177–186]. We do not wish
to detail further the rather involved CC response theory here.
The development of the theory over the years is discussed for
example in Refs.[9,62,72]. A recent review discussing more
extensively the use of CC response theory in the context of
non-linear optical properties will appear elsewhere [72]. This
review includes also some discussions on the consequences
of neglect/inclusion of orbital relaxation. One important issue
in CC response theory namely the study of excited states, will
be given some further attention here.

2.5.3 Excited electronic states

In the response theory, the equations for determining exci-
tations energies and transition properties are determined by
inspecting the frequency dependence of the response func-
tions. For exact states, the linear response function can be
written in terms of the unperturbed eigenstates {|	o〉, |	k〉}
of Ho as

〈〈X, Y 〉〉ωy
= P XY

∑

k

〈	o|X|	k〉〈	k|Y |	o〉
ωy − ωk

(37)

where P XY fxy = fxy + fyx . The excitation energies of the
system are ωk = Ek−Eo, where Eo is the ground state energy
and Ek is the energy of the excited state 	k . Thus, the linear
response function has poles when the external frequency is
equal to an excitation energy of the system, ω = ωk , and
the corresponding residue 〈	o|X|	k〉〈	k|Y |	o〉 is related to
the transition strength. An analogous pole-search is carried
out for the response function describing the response of the
approximate wave function, and equations for the determi-
nation of excitation and transition properties are identified.
A unique feature of response theory is that, in addition to
one-photon absorption that can be described using residues
of the linear response function, a two-photon (and n-photon)
absorption can be described using residues of the non-lin-
ear response function. In addition, residues of higher order
response functions for the ground state can be used to deter-
mine various excited state properties. In essence, from the
response expansion for one particular state, one can obtain
adiabatic energies, properties and transition properties for all
states of the system [62,176,187].

Excitation energies in coupled cluster response theory are
found as the eigenvalues of the asymmetric coupled cluster
Jacobian A[62,69,188]

Aµiνj
= 〈µi | exp(−T )[H, τνj

] exp(T )|HF 〉. (38)

The EOM-CC approach provides a closely related alternative
framework for the calculation of excitation energies [65]. For
the pure models CCSD, CCSDT, etc. EOM-CC and and cou-
pled cluster response theory excitation energies are exactly
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equivalent. EOM-CC can be seen as a consistent bi-orthog-
onal approach for diagonalizing the similarity transformed
Hamiltonian exp(−T )H exp(T ). While other properties in
EOM-CC differ from the CC response predictions includ-
ing transition properties, the EOM framework on the other
hand provides a simple and neat generalization of this di-
rect approach to the calculation of the energies of ioniza-
tion and electron attachment [65,92,93,189–192]. Develop-
ments similar to EOM-CC for excited states were derived
and implemented by Nakatsuji in the late 1970s as CI (SAC-
CI) [66–68]. This approach is still used today. Though in
practice various additional approximations are introduced in
SAC-CI, there are a number of formal similarities to EOM-
CC. Another possibility for a “direct” CC approach to excita-
tion energies, ionization potentials, and electron attachment
is Fock-space CC theory, see for example [193,194].

A CC response theory calculation of excitation energies
starts off with the calculation of the ground state ampli-
tude equations followed by the solution of the CC response
eigenvalue equations providing directly the excitation en-
ergy. Thus, the CC response theory is a direct approach pro-
viding equations for the excitation energy directly.This should
be seen in contrast to state specific methods, where the ground
and excited states are independently optimized. This distinc-
tion is important. While the CC approach for the ground state
requires solution of non-linear equations, the equations for
the excitation energy is a simpler linear eigenvalue problem.
For the single reference CC method to be accurate, the ground
state is required to be dominated by a single configuration,
but the excited state does not have to be dominated by a sin-
gle configuration. In fact, it is one of the principal and unique
advantages of the CC response theory for excitation energies
that states are allowed to mix freely at the correlated level.
However, there is a strong bias toward low-electron excita-
tions. Thus CC response theory is more accurate for states
dominated by single electron excitation compared to two-
electron excitation, and so on.

Several implementations of CC methods for excited states
have been presented at various levels, see for example Refs.
[42,65,183,184,195], following the first CCSD implemen-
tation of Koch et al [188]. A triples correction to CCSD re-
sponse excitation energies, CCSDR(3), has been presented
with the purpose of mirroring the quality of CC3 excitation
energy in a computationally cheaper non-iterative manner
[196,197]. Formally this approach has some similarity to the
previously suggested CIS(D) [183] doubles correction to CIS
excitation energies. Other approximate triples methods for
calculations of excitation energies have been suggested by
Watts and Bartlett before and after the CCSDR(3) approach
[198,199].Also other approximate triples excitation methods
have been promoted by other workers [128].

The CCS, CC2, CCSD and CC3 hierarchy of CC methods
has been thoroughly tested in many benchmark and produc-
tion calculations. For example, in studies comparing CC and
FCI excitation energies for the lowest single-electron excited
states of BH, CH2, Ne, H2O, N2, C2 (that is, states where in
a qualitative picture, only one electron is excited) [197,200]

a significant reduction of the scatter of errors at a given level
was obtained proceeding to high levels in the CCS, CC2,
CCSD, and CC3 hierarchy. Both the mean and maximum
errors are reduced by about a factor of three in each step. At
the CC3 level, the mean (max) errors are around 0.04 (0.1) eV.
The CCSDR(3) approach provides results rather similar to
CC3 in quality [196,197]. For two-electron excitations the
errors are significantly larger. Thus, CCSD (CC3) is for a
close to 100% two-electron excitation no better than CCS
(CC2) for a single electron excitation.

Excited state properties relating to derivatives of the total
excited state energy as for example excited state molecu-
lar gradients can also be obtained from the CC theory, be-
ing first formulated and implemented at the CCSD level in
the EOM-CC theory context [201,202] and later formulated
using Lagrangian techniques [62,120]. Excited state gradi-
ents have been developed for many excited state CC meth-
ods including RI-CC2 [134], spin-flip EOM-CCSD [203],
and other methods [204]. For electronic spectra the com-
bination of (a) CC with accurate triples models as in CC3
and CCSDR(3), (b) the use of large basis sets, and (c) the
use of excited state gradients to investigate the importance
of changes in structure and vibrations upon excitation, have
provided theoretical results of unforeseen accuracy and detail
for a number of fundamental organic compounds including,
for example, benzene [195,205], s-tetrazine [206–208], fu-
ran [209], pyrrole [210], cyclopentadiene [211], pyrimidine
[212], amino acids and related compounds [213]. One note-
worthy perspective is that it is only accounting for all the three
aspects above that one in general can obtain results within
0.1 eV for single excited states. Thus the high accuracy does
not come for free. For example, it is our experience that the
very widespread approach of calculating theoretical vertical
excitation energies and comparing them with the experimen-
tal energy of maximum absorption can involve additional er-
rors of the same magnitude (one or a few tenth of an eV) as the
error in modern theoretical methods. Geometrical relaxation
in many coordinates and small changes in many vibrational
frequencies may add up to a significant value aside from
experimental limitations. Obviously, this makes it problem-
atic to estimate the accuracy of ab initio methods from such
comparisons, and careful benchmark calculations are neces-
sary for this purpose.

2.6 Coupled cluster theory and effective solvent models

It is not the topic of this review to discuss the basis assump-
tions behind the different solvent models which are discussed
in other sources [73,80,81,214]. We shall only briefly de-
scribe a general strategy of how such models can be employed
in combination with CC models. Solvent models include
additional terms in the construction of the wave function and
energy of the solute to account for the interactions between
solute and solvent. The wave function is typically allowed
to relax to this coupling by determining the wave function
parameters using the variational principle. The problem to
be addressed now is that CC is not variational.
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We begin from the energy expression of the general form

E = 〈	|HQM |	〉 +
∑

p

λp〈	|Xp|	〉

+
∑

q

γq〈	|Yq |	〉〈	|Zq |	〉 + U (39)

whereHQM is the usual quantum mechanical electronic Ham-
iltonian operator for the solute system. The constants (from
the solute electrons point of view) λp, γq and U as well as the
operators Xp, Yq and Zq depends on the solvent model. The
simplest model is the dielectric continuum (DC) model. In
the DC model the solute resides in a cavity of some size and
the charge distribution of the solute is assumed to introduce
polarizations in a dielectric continuum described by dielec-
tric constants characteristic for the solvent. The DC model
can be represented by λp = U = 0, and the sum over q corre-
sponds to a multi-pole expansion where Yq = Zq are related
to the multi-pole operators for the charge distribution of the
solute. A more realistic and atomistic model is the QM/MM
approach. In the QM/MM approach [80,81,214,215] to sol-
vation the “solute” molecule is described by QM electronic
methods while the surroundings are described by a molecular
mechanics (MM) force field. The interactions with the QM
solute wave function is typically restricted to electrostatic
interactions by some partial charges and in more advanced
cases, also by polarizabilities. The partial charges in the MM
system give a number of contributions to U and the sum over
p in the above equation. We have found explicit polariza-
tion effects to be important. Inclusion of explicit polarization
effects gives rise to contributions to the sum over q.

Effective CC solvent models can be defined employing
an extended Lagrangian approach using the equation for the
expectation value derived in Eq. (28).We thus replace Eq. (39)
by the following equation, where in all expectation values we
replace 〈	| by 〈�| and all |	〉 by |CC〉 and we replace the
energy by the vacuum CC Lagrangian function

L(t, t̄) = 〈�|HQM |CC〉 +
∑

p

λp〈�|Xp|CC〉

+
∑

q

γq〈�|Yq |CC〉〈�|Zq |CC〉 + U. (40)

The trick is now that requiring this Lagrangian to be sta-
tionary with respect to both t and t̄ results in coupled equa-
tions determining these parameters

0 = 〈µi | exp(−T )(HQM + G) exp(T )|HF 〉, (41)

0 = 〈�|[(HQM + G), τνj
]|CC〉. (42)

In Eq.(42) we have introduced the effective operator

G =
∑

p

λpXp +
∑

q

γq(Yq〈�|Zq |CC〉

+〈�|Yq |CC〉Zq) (43)

Since the G operator depends on both t and t̄ Eqs. (41) and
(42) are coupled but can be solved for both CC/DC [216] and

CC/MM [217] models. For both CC/DC and CC/MM mod-
els one can introduce time-dependent solvent quasi-energy
Lagrangian’s from which CC/DC and CC/MM response the-
ory can be derived and implemented [215,218–222]. Both
equilibrium and non-equilibrium CC/DC models have been
developed [216,218].

A few formal comments concerning this formalism is re-
quired. First of all one should recall again that CC is non-
variational and the energy is therefore not bound but this has
not been seen to cause problems. It is important to note that
the Lagrangian now takes a more central and direct role. In
the usual “vacuum” CC theory, the Lagrangian is a theoret-
ical tool to derive equations that are tractable for computer
implementation. The Lagrangian is not actually used or even
necessary to calculate the energy. For the effective solvent
models the non-linear terms in the energy function (the sum
over q) cause the QM part of the energy calculated from the
Lagrangian in Eq. (40) to differ from that calculated from the
standard CC energy expression in Eq. (11). It is the Lagrang-
ian that gives the correct energy, and it is the Lagrangian
that converges to the FCI energy when the wave function
approaches the exact limit. In fact, this issue could also be
relevant to other non-variational methods for solvent effects.
Inserting simply an effective operator in the vacuum equa-
tions to obtain working equations in the solvent case does
not necessarily give results that converge to the exact result
when the exact wave function is employed in a non-varia-
tional parameterization for a particular solvent model.

One of the advantages of the CC/DC and CC/MM meth-
ods is that with the use of CC for the solute, the accuracy
is so high that one can begin to reliably debate the intrin-
sic error of the solvent models. This is important also since
the relative importance of the correlation effects and solvent
effects obviously vary with solute, solvent and property. The
CC/DC approach is of course primarily attractive due to its
simplicity. The definition of the size and shape of the cav-
ity adds to the more empirical nature of this approach and
the DC/CC approach with only a cavity reaction field for a
spherical cavity cannot be expected to have predictive power.

The QM/MM approach is more complicated in use, but
is more promising in a number of ways, accounting for more
specific interactions between solvent and solute molecules.
Since the QM/MM approach is atomistic, one can test the per-
formance of the interaction models in comparison between
CC/MM and CC cluster calculations using the later as ref-
erence (which is safe since CC is size extensive). Further-
more, in combination with molecular dynamics simulation,
the QM/MM approach can be used to calculate a true sta-
tistical distribution of the particular property in the solvent.
An example of such a calculation, on the n → π∗ transi-
tion of formaldehyde in aqueous solution, will illustrate this.
This excitation is an often used benchmark case, see Refs.
[223–225] for other recent calculations. In a first study, the
CC/MM was tested to give reasonable result in micro-sol-
vation by comparing results obtained for small clusters of
formaldehyde with a few water molecules in CC/MM and
full CC calculations with counter poise corrections [226]. In
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a second part of the study [227], a classical molecular dynam-
ics (MD) simulation of formaldehyde in water was carried out
dumping every 1 ps a configuration of the system. Using up to
1,200 such configurations in CC/MM calculations, the elec-
tronic excitation energy was investigated providing a statisti-
cal distribution of the vertical excitation energy. Such studies
are unique in the sense of accounting for the effects of both
the solvent dynamics/statistics and electron correlation. The
final predictions of the shift in the vertical excitation energy
was found to be 2,803 cm−1 including polarization effects
at the CCSD/aug-cc-pVTZ level (excluding the effects of
relaxing the geometry in the solvent which is also important
for accurate comparison with experiment). Excluding polar-
ization effects gave 2,139 cm−1. The results for the largest
studied formaldehyde-water cluster gave 1,911 cm−1 while
the CC/DC approach gave less than 700 cm−1. Clearly the
CC/DC method fails to reproduce the results obtained by
the more elaborate CC/MM calculations. Also polarization
effects are seen to be significant.

3 Vibrational structure theory

In this section attention is shifted from the electrons to the
nuclei. We discuss methods for calculating accurately the
bound states of molecules relating to the motion of the atomic
nuclei relative to each other based upon the vibrational self
consistent field (VSCF) method.

3.1 Second quantization for vibrational structure theory

The second quantization formulation for vibrational structure
theory developed in Ref.[51] is a very convenient framework
for deriving and analyzing the theory for wave functions for
nuclear motion. In the definition of VCC methods, the con-
struction and effective handling of this algebra was one of the
crucial challenges. Once the appropriate (not just any) SQ
was defined, the basic formulation of VCC is rather straight-
forward and the next challenge is the actual implementation
and testing of various approximations.

As for the electronic case the essence of SQ is that both
the relevant quantum mechanical states and the operators can
be expressed in terms of creation and annihilation operators.
Consider a system with M modes, where a “mode” denotes
a vibrational degree of freedom. For each mode m we have
an orthonormal one-mode basis, {φm

sm(qm), sm = 1, Nm}.
The creation operator a

m,†
sm creates mode m in the vibra-

tional level with index sm. The corresponding annihilation
operator am

sm removes this vibrational level again. The sec-
ond-quantization algebra is defined by the relations (to be
compared to Eqs.(1–3)),

[am
rm, a

m′†
sm′ ] = δmm′δrmsm, (44)

[am
rm, am′

sm′ ] = [am†
rm , a

m′†
sm′ ] = 0, (45)

and

ap|vac〉 = 0. (46)

where |vac〉 is the state vector where all modes are unoccu-
pied in all levels.

Any Hartree-product M-mode basis state can be repre-
sented in terms of the creation operators as

|r〉 =
M∏

m=1

a
m†
rm |vac〉. (47)

As for the electronic case we may define excitation operators
denoted τµ relative to a particular reference ket |i〉. In this
context certain modes are excited out of their occupied levels
into their virtual levels by the excitation operators τµ. The µ
index is a compound index giving all necessary information to
specify the excitation including which modes are excited and
to which levels. The excitations can be written as products of
one mode excitations of the type a

m†
am am

im for excitation from
the occupied level im to the unoccupied level am. The excita-
tion operators τµ satisfy similar relations as for the electronic
case. Thus we have commutator relations ( [τµ, τν] = 0, ),
killer conditions ( τ †

ν |i〉 = 0 ) and orthogonality condi-
tions ( 〈µ|ν〉 = 〈i |τ †

µτν |i〉 = δµ,ν ). Accordingly the full
configuration space may be written as {|i〉, τµ|i〉}.

Various forms and approximations for the vibrational
Hamiltonian are in use. Any first quantization Hamiltonian
can be represented in terms of a second quantization Hamil-
tonian, but the details will of course be different. One class
of Hamiltonians is the sum over product form, which in both
first and second quantization can be written as

H =
Nt∑

t=1

ct

M∏

m=1

hm,t (48)

The one-mode operators in SQ notation are
SQhm,t =

∑

rm,sm

h
m,t
rmsma

m†
rm am

sm (49)

which is related to the first quantization representation through
h

m,t
rmsm = 〈φm

rm(qm)|hm,t |φm
sm(qm)〉. Here hm

t is the first quan-
tization one-mode operator. Taylor expanded force fields of
the potential (including for example quartic force fields) is
a special case where the one-mode operators are all of the
form qi

m.

3.2 Vibrational SCF, MP, and CI

Vibrational self-consistent field (VSCF) is based on the appli-
cation of the Hartree approximation to the problem of coupled
distinguishable anharmonic oscillators. The SQ form for the
VSCF reference state can be written as

|i〉 =
M∏

m=1

a
m,†
im |vac〉 (50)

Applying variational criteria to the energy

Ei = 〈i|H |i〉, (51)
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the one-mode functions for each mode, φm
im(qm) are found to

be constraints with the normalization conditions,
〈φm

im(qm)|φm
jm(qm)〉 = δimjm . The index vector, i, indicates the

nature of the VSCF reference state. The variational criteria
determine the VSCF one-mode functions as eigenfunctions
of the effective one-mode operator

Fm,iφm
im(qm) = εm

imφm
im(qm), (52)

Fm,i = 〈−m
i |H |−m

i 〉, (53)

where |−m
i 〉 is a state in the (M − 1) mode space excluding

the mode m function factor.
The φm

sm(qm) functions can be represented in several ways,
including expansion in a set of primitive basis functions, for
example harmonic oscillator (HO) functions. The one-mode
functions can be denoted modals in analogy to the orbitals of
the electronic structure theory. The VSCF modals, both the
occupied and the unoccupied (virtual) one-mode functions,
can be used in the subsequent calculations with a more accu-
rate wave function. Thus, we make a distinction between a
one-mode and M-mode problem similar to the one-electron
and N -electron problem in electronic structure theory. We
now again focus on the correlation problem: the definition of
more accurate M-mode wave functions. VSCF only includes
interaction between the modes in a average sense. Excitations
from occupied modals into “virtual" modals – the unoccupied
levels in the VSCF – can be included using similar principles
for proceeding beyond the mean-field description in the elec-
tronic case.

Applying the principles of the Møller–Plesset [34] per-
turbation theory to the vibrational correlation problem gives
rise to vibrational Møller-Plesset (VMP) perturbation theory.
InVMP theory the zeroth order Hamiltonian, H0, and the cor-
responding zeroth order wave function are defined from the
VSCF mean-field description providing the following par-
titioning of the Hamiltonian, H = H0 + U = F i + U i,
F i = ∑

m Fm,i. The fluctuation operator U i describes the
difference between the true many-mode interaction and the
VSCF mean field representation. This separation is unique
to each state motivating the i index vector. Equations for the
perturbed wave function and energies are obtained by intro-
ducing the perturbation expansion into the time-independent
Schrödinger equation and collecting terms according to order.
VMP approaches were first pursued by Gerber and collabo-
rators [59–61] considering the second order variant under the
name of correlation-corrected VSCF. Proceeding at a fairly
general level, an open ended VMP approach can be imple-
mented, [50].

The vibrational configuration interaction (VCI) [47,48,
51–55] parameterization of the wave-function is a linear expan-
sion in the space of all Hartree products for the M-mode
system

|VCI〉 = Ci|i〉 +
∑

µ

Cµτµ|i〉. (54)

The parameters are determined from variational criteria giv-
ing standard CI eigenvalue equations. The Full VCI (FVCI)

wave function is obtained by including the full sum over all
excitations µ. Truncated VCI treatments include only some
correlations between the modes, but potentially in a much
less computationally demanding manner. One way of trun-
cating the VCI wave function is by excitation level: only a
limited number of modes are allowed to be excited at the
same time.

3.3 Vibrational coupled cluster theory

Once the SQ algebra and the excitation operators are de-
fined, the definition of vibrational CC (VCC) follows at a
high level of abstraction, that of the previously discussed
electronic case. The vibrational coupled cluster ansatz is the
exponential wave function ansatz in the M-mode space of
Hartree products

|VCC〉 = exp(T )|i〉. (55)

Here |i〉 is the VSCF wave function or any other single
Hartree product reference state. T is the cluster operator that
is a sum over allowed excitations T = ∑

µ tµτµ. The tµ
parameters are the VCC cluster amplitudes while τµ are the
corresponding excitation operators.

The VCC wave function ansatz is now introduced into the
time-independent vibrational Schrödinger equation, trans-
formed with exp(−T ), and equations for the cluster ampli-
tudes are obtained by projection onto the manifold of excita-
tions out of the reference state 〈µ| = 〈i|τ †

µ

0 = eµ = 〈µ| exp(−T )H exp(T )|i〉. (56)

Once the non-linear cluster equations have been solved for
the cluster amplitudes, the VCC energy can be calculated
from the following equation obtained by a projection onto
the VSCF reference state

EV CC = 〈i|H exp(T )|i〉 (57)

This was the easy part. The more challenging parts are the
actual implementations in connection with various Hamilto-
nians.We will not here enter into any lengthy detail though the
possibility of making an efficient implementation is of course
decisive for the success of a theoretical method. Instead we
will focus on explaining some of the differences of VCC
relative to VMP and VCI, as well as the basic differences
between CC for electrons and CC for the vibrational motion
of the nuclei.

How do we introduce approximate VCC methods? One
approach is to truncate the cluster operator by the number of
modes/pseudo-particles that are allowed to be excited simul-
taneously and solve the cluster amplitude equations in this
excitation space. Thus, each calculation begins with the cal-
culation of a VSCF state, and thereafter an excitation space
is defined based on excitations out of the VSCF reference
state. Doing this for each state corresponds to a state-specific
approach.

Both VCI and VCC have the flexibility to represent the
exact state employing a complete excitation space. This is
an advantage over VMP where convergence of the VMP
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perturbation series cannot be guaranteed and in fact it is often
unlikely [50,228]. A major advantage of VCC and its asso-
ciated exponential parameterization compared to VCI is that
VCC ensures size-extensivity [51,52]. In addition to long
experience from the electronic structure calculations on the
importance of this issue, the VCC calculations that have been
carried out [51,52] show that typically the accuracy for the
truncated VCC results is better than the one for their VCI
counterparts with the same excitation space [52,228]. At a
certain excitation levelnVCC[n] and a correspondingVCI[n]
have the same number of free parameters and they have for-
mal operation counts of the same order of magnitude but
with a larger pre-factor for VCC. VCC[n] is significantly
more complicated to implement than VCI[n], and indeed the
reported implementation of VCC is not fully optimal [52].
However, an improved implementation is on the way to re-
solve outstanding problems. BothVSCF,VMP,VCI andVCC
methods have been implemented in the MidasCpp (Molecu-
lar Interactions, dynamics and simulation in C++/Chemistry
program package) program using the sum over product Ham-
iltonian in Eq.(48) [50–52]. Other implementations of VSCF,
second order VMP [59–61] and VCI [53–55] have been re-
ported previously.

The VCC approach has many formal similarities with
the CC approach for electrons. However, it is also appropri-
ate to emphasize the differences. First of all, SQ techniques
and formulations for electrons are well-developed, while the
same cannot be said in vibrational theory (note that we do
not use an ordinary boson SQ). The electrons are indistin-
guishable, share a common basis, have spin one half, and
are assigned a position in the usual 3D coordinate space.
For vibrational structure theory each of the distinguishable
spin-free modes have a basis set of their own. In fact, the
definition of the modes is one of the central issues. Normal
coordinates is one option but generally different coordinates
will give different results. In direct continuation, the elec-
tronic molecular Hamiltonian has a priori well-known one-
and two-electron operators. In vibrational structure theory
the Hamiltonian has a much more complicated form and is
not known a priori. The kinetic energy operator is already
a complicated issue even using normal coordinates. In nor-
mal coordinates the frequently used harmonic oscillator ki-
netic energy operator is simple but not exact. On the other
hand, the exact Watson operator [229] formally couples all
M modes through the inverse inertia tensor even under the
assumption of J=0. Similar conclusions may be drawn for
the potential. Within the Born-Oppenheimer approximation
the exact potential energy surface (PES) is defined as the ex-
act eigenenergy of the electronic molecular Hamiltonian and
the PES depends on all coordinates. Though points of the
PES can be calculated approximately using electronic struc-
ture methods, it is presently unrealistic to achieve accurate
analytical representations of the PES for systems with many
atoms. The PES can be defined by some model Hamiltonian,
polynomial expansion, interpolation, etc. How to represent
the Hamiltonian for the vibrational wave function is in short
a research issue in itself which shall not be discussed here.

The recent calculations on formaldehyde [50,52] and eth-
ylene [228] provides some illustrative test calculations for
VCC and related methods. Let us consider the eight vibra-
tions in ethylene that are not CH stretch vibrations. To inves-
tigate the behavior of the VCC method the error with respect
to FVCI for VMP2, VCI[gs,3] (excitations are counted with
respect to the ground state with ground state VSCF modals
and excited states are obtained as roots of the same VCI ma-
trix), VCI[ss,3] (state-specific: each state has its own VSCF
modals and excitations are counted with respect to this) and
VCC[3] (also state specific) can be considered. The triple
excitation level is a reasonable level to consider as up to three
mode direct couplings are included in the semi-quartic force
field used. The first order wave function used to calculated
the VMP2 energy includes therefore triples excitations. The
four different approaches therefore include a similar number
of free parameters but are constructed in different ways. The
mean errors of the eight states are respectively 2.14, 33.55,
1.40 and 0.93 cm−1 for the four approaches. The most com-
plicated method to implement, VCC, also comes out best.
The fact that VCC gives the highest accuracy in comparison
with other approaches with the same number of parameters
has also been observed in other cases and is obviously the
attractive feature of the methodology together with the cor-
rect scaling of the results with size of the system [51,52]. An
example of the problems for VCC (as well as for the other
methods) can be found among the CH vibrations of ethyl-
ene. One of the CH vibrations causes significant problems in
simply converging the VCC equations since the VSCF refer-
ence is a very poor reference. The FVCI wave function for
this state contains several large components and the VSCF
approach cannot describe appropriately these mixings. This
shows that multi-reference problems can also be present for
vibrational wave functions. Possible solutions to this problem
are discussed in the outlook.

4 Summary and outlook

We have reviewed selected research developments employ-
ing CC theory in the description of the electronic structure
of molecules and the dynamics of atomic nuclei.

Today much is known about implementing and apply-
ing the standard methods of CC theory for molecules with a
ground state dominated by a single Slater determinant. This
includes the HF, MP2, CCSD, and CCSD(T), hierarchy of
methods for calculation of ground state structures and static
properties. A number of other single reference CC methods
are interesting in different contexts. For example the CCS,
CC2, CCSD and CC3 (or alternatively CCSDR(3) for excita-
tion energies) hierarchy is now well established for describ-
ing response properties and electronic excitations. Due to
their importance in applications to chemical systems, the fur-
ther development of these methods is obviously important.
At this moment there seems to be no real competition to high
end CC methods with respect to accuracy for single reference
systems. Unless major breakthroughs occur in other areas, the
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CC methods will continue to be the methods of choice for
high accuracy calculations whenever feasible.

On the other hand there are also some major obstacles to
overcome if CC methods should develop their range of appli-
cability considerably beyond the present status. In principle,
the discussed CC methods should be perfectly applicable to
many issues relating to large molecules. However, the use
of CC methods is in many cases unrealistic due to the rapid
increase in computational effort with the size of the system.
Some low-scaling CC methods applicable to large systems
have been developed as discussed in the introduction. Such
lower-scaling could make CC calculations feasible for much
larger systems where presently less accurate methods have
to be used. However, it is certainly too early to consider this
a closed issue. Therefore, CC methods for large molecules
is an area where major breakthroughs are still to come and
much work is needed if the CC approach for electrons is to
have as central a role for theoretical chemistry in the coming
25 years as it has had the last 25 years.

Another major challenge is the construction of robust CC
methods for multi-reference cases allowing all regions of the
full potential energy surface to be investigated in a fairly
accurate and user-friendly manner. This challenge is not new
and there have been many attempts in the past. However, we
are still optimistic in the sense that there has been recent pro-
gress and when new formulations of CC methods are found
(for example in relation to the line of research mentioned
above), they may inspire new approaches to this problem
also.

As long as such low-scaling CC methods are not around
the corner or still rather expensive in use, effective modeling
of solvents etc. through, for example, QM/MM approaches
will have a market. It is clear that accounting at the same time
for solvent effects and electron correlation effects in an accu-
rate way is certainly an important goal for quantum chem-
istry. Much of the history of quantum chemistry has been
related to studies of molecules in the gas phase even though
major parts of chemistry take place in condensed phases.
CC/MM calculations accounting for both the statistics due
to the dynamics in the solution as well as a CC descrip-
tion of the solute have been reported with MM force fields
including polarization interactions. A topic calling for future
research is the improvement of the interface between the part
of the system described by QM and the part described by
MM. For example, inclusion of exchange-repulsion and dis-
persion effects on the solute electronic wave function will be
important for providing more accurate results. It is of course
necessary that the great simplicity compared to full QM treat-
ments is retained for the method to fulfill its role allowing,
for example, inclusion of many hundred solvent water mol-
ecules without problem in conjunction with statistical aver-
aging over many configurations.

Finally, I personally have great interest and hopes for the
use of CC theory for describing the motion of the atomic
nuclei. This is a research area still in its infancy. The initial
results are encouraging, but a lot of research is still required
to investigate the pros and cons of different schemes for con-

structing and calculating the wave functions as well as a full
blown computer software that can be of general use. We are
already addressing some outstanding issues but many more
are pending. The practical solution of the VCC equations
for excited states is sometimes challenging in the state-spe-
cific approach used so far, requiring the development of more
robust algorithms. Another approach we are considering to
develop in the near future is VCC response theoretical meth-
ods. This approach would use response theory for calculat-
ing vibrational excited states thereby circumventing some of
the practical problems encountered in solving the non-linear
equations for the excited states. This development also relates
to another important issue in modern computational chem-
istry. With the accuracy obtainable in CC electronic struc-
ture calculations, the remaining errors in the predictions of
a given property often lies in appropriately accounting for
vibrational energies, vibrational averaging and/or pure vibra-
tional contributions. Vibrational response theory provides a
new approach for dealing with this issue [230] but has not
been implemented at the VCC level yet. Further work is also
required on the use ofVCC together with flexible interfaces to
general potentials. For example, developing algorithm for on
the fly direct electronic structure calculation of the necessary
points on the PES.

The transfer of the CC ansatz from the nuclear wave func-
tion to the electronic wave function has posed research chal-
lenges to theoretical chemists for close to 40 years now. It
is our hope that this recent introduction of CC methods for
describing the dynamics of the atomic nuclei will similarly
have decisive impact on a fraction of theoretical research
for many years. An area of application for the future that
is very exciting is the use of approaches similar to VCC in
the context of time-dependent dynamics for propagation of
wave packets. Today’s most flexible methods for propagat-
ing wave packets are based on linear expansion in the space
of Hartree products. A very successful example is the multi-
configurational time-dependent Hartree (MCTDH) approach
[231]. VCC is interesting in this regard since (a) the station-
ary states are known to be accurately predicted and (b) the
size-extensivity makes it a method where high accuracy can
be maintained also for many degrees of freedom. However,
it remains to be seen whether the standard approach of using
projection in CC theory as opposed to variational criteria has
consequences for the stability of the time-evolution. In addi-
tion the practical interface between the choice of coordinates,
basis set, operator and the build of the VCC wave function is
absolutely nontrivial.

The very short conclusion of this paper is that significant
progress in CC theory has lead to a large impact of CC meth-
ods in chemistry, but there are still major research problems
to address that, if successfully handled, can make the CC
method even more central in future molecular sciences.
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